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Abstract 
 
In this project, a four-bar mechanism designed for gardening was created and analyzed. The 
overall goal was an easy-to-operate garden tool with smooth motion and simple operation. The 
mechanism was created using the function generation algorithm to determine link lengths and 
relative link angles as well as bisection method to create an animation of the motion in 
MATLAB. Initial angles were estimated and function generation was used to fit these 
parameters to the desired precision points. It was calculated that having the input and output 
links the same length resulted in the best path of motion. The prototype was constructed from a 
thin sheet of MDF. The prototype executed smooth motion just as desired. Considering the 
lightweight properties of MDF with the given dimensions,  recommended choice of materials 
for future full-scale prototypes would be lightweight metals such as aluminum or a wood such 
as oak or ash. 
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Introduction 
 
A four-bar mechanism (linkage) is a mechanical system which consists of four bodies             
connected at four pivot points. The four bodies are called the frame, input, coupler, and               
follower (also referred to as output link). The frame is a fixed body that will be used as the                   
reference-frame for any movement generated by the input link. The input link takes the input               
motion and transfers it to the follower, directed by the coupler link. The three moving links                
work in conjunction to generate the desired motion at the end-effector. In this case, the four-bar                
mechanism will be employed as a gardening tool. 

 
Figure 1: Generic Four-Bar Mechanism 

 
The gardening tool was designed to create a ‘clawing’ motion meaning that the end effector               
would have to move in both the x and y-axis, from a planar perspective. The whole idea is that                   
the end-effector should be moddable such that any tool could be attached to the end; similar to                 
the function of a hand-drill. A selection of shovels, rakes, and hoes could be attached to the                 
output node of our four-bar mechanism such that the user would be able to accomplish a                
variety of tasks with the same mechanism. 

 
Figure 2: Hoe, Rake, Spade (left to right) 

 
This idea was birthed when the issue of elderly-gardeners came to mind. It seems that               
gardening is a leisurely activity that the elderly tend to pick up. Hours spent hunched over a                 
garden could be strenuous to one’s back and discourage one from spending a length of time                
tending to a garden. This tool is designed to help the user complete a repeatable task over and                  
over without tiring out. Although this application is better suited towards those who tend to               
large gardens, it is a handy tool that could greatly benefit anyone with an aching to grow                 
vegetation. 
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Description of the Task  
 
The initial step was generating a design with a focus on the four critical precision points of the                  
desired motion. After determining the four precision points, the points could then be used as               
estimates for our function generation algorithm. Figure 3 shows the four precision points from              
the initial design planning phase. 

 
Figure 3: Four Precision Points from Initial Planning 

 
However, it was decided that the initial design was a bit more complex than what was desired.                 
Thus, we revised our initial design and came up with a more suitable design. The first precision                 
point is the starting position, the second precision point raises the end-effector up, the third               
precision point lowers the end-effector down, and the fourth precision point slightly pulls the              
end-effector towards the input node, consequently completing a full cycle. 
 

 

 
Figure 4: Six equations utilized for the Function Generation Algorithm (for j=1:1:3) 

 
The six equations detailed in figure 4 consist of 3 sets of two equations; one set each for x and                    
y. The initial point (starting position) is a given value that we set; thereby only requiring the                 
solutions of 3 sets of two equations, instead of 4 sets of two equations. The function generation                 
algorithm solves for the distances and displacements of each consequent point that comes after              
the initial point. 

 
Figure 5: Plot of the final design’s precision points  
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In figure 5, the 4 links are illustrated by the one black line and the three blue lines labelled 1                    
(frame), 2 (input), 3 (coupler), and 4 (follower). The coordinates of (R2x, R2y) = (20, -0.5)                
reveal the first point; where the input link starts. The input link starts at around a 30° angle,                  
relative to the frame link. The input link rotates in the clockwise direction for about 130°. The                 
input link then reverses in the counterclockwise direction for the same amount; this is              
equivalent to one cycle for our four-bar mechanism. Figure 6 depicts the 4 frames that our                
four-bar mechanism goes through to complete one mechanical-cycle. It is also a good reflection              
of how accurately the physical model corresponds to the calculated frames in figure 5. 
 

 
Figure 6: Pictures of the 4 mechanical-cycle frames 

 
Design of the Mechanism  
 
The equations shown in figure 4 were used to determine the level of suitability of the chosen                 
initial values and guesses. When it comes to the evaluation of the objective function, it is most                 
desirable to have a value as close to 0. The previous iteration leads to a function evaluation                 
value of 0.00037485. The current iteration function evaluation number sits at 0.00013534. The             
former value was acceptable but it was made better by changing the input variables              
fundamental to the objective function. 

 

R2x  R2y  R3x  R3y  R4x  R4y  β1  β2  β3   ϕ1   ϕ2   ϕ3  γ1  γ2  γ3  

20 -0.5 45 -2 20 2 
4

−π  2
−π  18

−13π  6
π  4

3π  9
8π  4

π  
 

2
π  
 

18
13π  

 Figure 7: Initial values and guesses for Function Generation (Fval = 0.00037485) 
 
 

R2x  R2y  R3x  R3y  R4x  R4y  β1  β2  β3   ϕ1   ϕ2   ϕ3  γ1  γ2  γ3  

20 -0.5 45 -2 20 2 
3

−π  9
−5π  9

−8π  6
π  4

3π  9
8π  3

π  
 

9
5π  
 

9
8π  

 Figure 8: Improved initial values and guesses for Function Generation (Fval = 0.00013534) 
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The critical changes made to the initial values were the beta (𝛽) and gamma (𝛾) values. These                 
are the angles between the frame & input as well as frame & follower links. The x and y                   
coordinates of the precision points were left untouched because those are the constants that              
determine the points that the mechanism has to pass through. The changes in the initial guesses                
set up a different configuration for the four-bar mechanism and thus alters the motion of our                
mechanism. 
 
The beta values signify the rotation (in radians) of the input link through each precision point                
relative to the first precision point. Similarly, the gamma values signify the rotation (in radians)               
of the output link through the precision points relative to the first precision point. Therefore,               
changing the beta and gamma values result in the algorithm returning different lengths for the               
links. Accordingly, the beta and gamma values had to be iterated upon so that the generated                
motion would be similar to what was desired. Figure 9 shows the difference in the dimensions                
of the links based on the initial values and guesses of the second-last and last iteration. The                 
notable changes are the lengths of r1 (frame), r3 (coupler), and r4 (follower). Figure 10               
illustrates the two mechanism configurations; initial configuration on the left and improved            
configuration on the right. 
 

 
Figure 9: Lengths of frame, input, coupler, and follower links respectively with Fval 

 

 
Figure 10: Plot of the initial and improved configurations 

 
It took multiple random guesses to start the design process. After the random guesses generated               
a mechanism that more resembled the desired mechanism, a few approximated iterations closed             
the gap and led to the final design that you see on figure 5 and on the right side of figure 10.                      
Figure 9 shows the final two iterations of the initial values and guesses along with their                
respective evaluated objective function values. The function generation equations have their           
effects on the objective function altered when the beta (𝛽) and gamma (𝛾) values change. 
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Figure 11: Mechanism with Beta and Gamma angles 

 
Figure 11 specifies where the beta and gamma angles are located on our mechanism along with                
the respective R​j vector labels for each link. The first two equations (repeated three times for                
j=1:1:3) in figure 12 are solved as a matrix with the use of the R​j vectors and the beta, phi, and                     
gamma angles. The [x,y] vectors for R​3 and R​4 as well as the values for 𝛗 ​1,2,3 (phi) are                  
unknowns that are equated to variables ‘a’ through ‘g’. Then using the MatLab function,              
fminunc​, the objective function is minimized till the point F = 0. ​fminunc accomplishes this               
through the method of finding a minimum value for an unconstrained multivariable function             
(i.e. the objective function used here). 
 

 
Figure 12: Function generation equations with variables in place for estimated starting points 
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Kinematic Analysis  
 
The displacement of the input link is characterized by θ​2​, coupler link by θ​3​, and the output link                  
by θ​4​. The relationship between θ​2 and θ​3 is not linear. This means that finding the value of θ​3                   
based on the known value of θ​2 requires more complex calculations. As you can see in figure                 
13, the relationship between θ​2 and θ​3 exhibits the behavior of a quadratic. The reason this                
occurs is that the rate of change for θ​3 is higher than that of θ​2​. On the other hand, the                    
relationship between θ​2 and θ​4 seems to exhibit the behaviour of a linear relationship, illustrated               
in figure 14. This is because the rate of change of θ​2 and θ​4 are almost equivalent due to the                    
design of our four-bar mechanism. If you take into consideration the lengths of the links and                
the location of the θ angle you are observing, it makes more sense as to why one θ value might                    
change quicker than the other. Ultimately, it is the fact that the input and output link in this                  
four-bar mechanism share the same length, while the coupler link is much longer, that causes               
this relationship to hold between θ​2​ and θ​3​ as well θ​2​ and θ​4​. 
 

 
Figure 13: Angular displacement of Input θ​2​ vs Coupler θ​3 

 

 
Figure 14: Angular displacement of Input θ​2​ vs Output θ​3 
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The (1) equations in figure 15 are representative of the mechanism using vectors R​1,2, 3, and 4 and                  
angles θ​2,3, and 4​. The (2) equations in figure 15 are the first step to solving for the values of the                     
thetas. By running a root-finding Bisection method algorithm on the function f(θ​4​), we can find               
values roots for θ​4 that work with θ​3 and θ​4 to minimize the objective function of the function                  
generation algorithm. 
 

 
Figure 15: Equations used to solve for θ​2​, θ​3​, and θ​4 

Figure 16: Plots for θ​2​ vs center of mass displacement 
 
The plots in figure 16 show the displacement of the center of mass for the input (x​2​,y​2​),                 
coupler(x​3​,y​3​), and output links (x​4​,y​4​) in relation to the change in θ​2​. The center of mass                
appears to change more in the x axis, according to the plots. This is reasonable because the                 
links move more in the x direction than they do in the y direction.  
 
Figure 18 shows the two plots for θ​2​ compared to the angular velocities for θ​3​ (left) and θ​4 
(right). Figure 19 shows the two plots for θ​2​ compared to the angular accelerations for θ​3​ (left) 
and θ​4​ (right). The data illustrated in the collective four plots were derived using the analytic 
method along with equations in figure 17. 
 

 
Figure 17: Equations used to find angular velocity 
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Figure 18: Plots for θ​2​ vs angular velocity for θ​3​ and θ​4 

 
 
 

 
Figure 19: Plots for θ​2​ vs angular acceleration for θ​3​ and θ​4 

 
 
 

 
Figure 20: Plots for θ​2​ vs linear velocity of input link’s CoM (x, y) 
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Figure 21: Plots for θ​2​ vs linear velocity of coupler link’s CoM (x, y) 

 
 
 

 
Figure 22: Plots for θ​2​ vs linear velocity of output link’s CoM (x, y) 

 
 
 

 
Figure 23: Plots for θ​2​ vs linear acceleration of input link’s CoM (x, y) 
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Figure 24: Plots for θ​2​ vs linear acceleration of coupler link’s CoM (x, y) 

 
 

 
Figure 25: Plots for θ​2​ vs linear acceleration of output link’s CoM (x, y) 

 
The plots in figure 20 through figure 22 present the data for θ​2 against linear velocity for the                  
center of masses of the input, coupler, and output links in the x and y axes. The plots in figure                    
23 through figure 25 present the data for θ​2 against linear acceleration for the center of masses                 
of the input, coupler, and output links in the x and y axes. The three lines in each of the plots                     
are color coded to represent the three solutions found: red for analytic, green for basic               
numerical, and blue for expanded numerical. For the most part, the analytic solution and the               
basic numerical solution either are very similar or overlap fully. It is acceptable to say that they                 
both produce approximately the same solution to the values for linear velocity and acceleration.  
 
However, in the plots in figure 20 through figure 23, the expanded numerical solution plot lines                
are very distinct from the analytic and basic numerical solution plot lines. This dissimilarity              
stems from an error in the code which could not be fixed. Furthermore, the analytic solution                
plot lines have a spike in the plots on figure 21, 22, 24. and 25. It is hypothesized that these                    
spikes signify the existence of a singularity point. This singularity point in our four-bar              
mechanism suggests that at a certain orientation our mechanism behaviour will be            
unpredictable to the extent that the velocity and acceleration can drastically change in a short               
period of time. 
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Dynamic Analysis  
 

Figure 26: Solidworks analysis of each link 
 
 
 
 
Analysis of Link 2 

 
 

 (1)F aΣ 2x = m2 G2x  
 (2)F aΣ 2y = m2 G2y  

 (3)MΣ G2 = IG2 + θ2
′′  

 
 (1)aF 12x + F 32x = m2 G2x  
 (2)aF 12y + F 32y = m2 G2y  

 (3)r sinθ F r cosθ F r sinθ F r cosθ FM 12 + 2
1

2 2 12x − 2
1

2 2 12y − 2
1

2 2 32x + 2
1

2 2 32y = IG2 + θ2
′′  

This line will be re-written as: 
 (3)M 12 + a • F 12x − b • F 12y − a • F 32x + b • F 32y = IG2 + θ2

′′  
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Analysis of Link 3 

 
 

 (4)F aΣ 3x = m3 G3x  
 (5)F aΣ 3y = m3 G3y  

 (6)MΣ G3 = IG3 + θ3
′′  

 
 (4)aF 23x + F 43x = m3 G3x  
 (5)aF 23y + F 43y = m3 G3y  

 (6)r sinθ F r cosθ F r sinθ F r cosθ F2
1

3 3 23x − 2
1

3 3 23y − 2
1

3 3 43x + 2
1

3 3 43y = IG3 + θ3
′′  

This line will be re-written as​: 
 (6)c • F 23x − d • F 23y − c • F 43x + d • F 43y = IG3 + θ3

′′  
 
 
Analysis of Link 4 

 
 

 (7)F aΣ 4x = m4 G4x  
 (8)F aΣ 4y = m4 G4y  

 (9)MΣ G4 = IG4 + θ4
′′  

 
 (7)aF 14x + F 34x = m4 G4x  
 (8)aF 14y + F 34y = m4 G4y  

 (9)r sinθ F r cosθ F r sinθ F r cosθ F2
1

4 4 14x − 2
1

4 4 14y − 2
1

4 4 34x + 2
1

4 4 34y = IG4 + θ4
′′  

This line will be re-written as​: 
 (9)e • F 14x − f • F 14y − e • F 34x + f • F 34y = IG4 + θ4

′′  
 
 
 
Newton’s Third Law 
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   (10)F 23x + F 32x = 0  
   (11)F 23y + F 32y = 0  
   (12)F 34x + F 43x = 0  
   (13)F 34y + F 43y = 0  

 
Knowns 
 

 
Link 

 
Length, r (mm) 

Mass, m 
(grams) 

Moment of 
Inertia, IGx   

( )mmg 2  

Moment of 
Inertia,  IGy  

( )mmg 2  

1 49.88 3.42 109.85 3019.47 

2 20.01 1.18 12.81 196.11 

3 47.19 4.36 156.38 6232.53 

4 20.01 1.18 12.81 196.11 

Figure 27: Mass and inertia properties of each link  
 

                        ​Note​: All masses and moments of inertia were found using solidworks.τ = M 12  
 
The prototype was made from a single ⅛ inch sheet of MDF. The calculated masses and inertia                 
properties do correspond to the simple geometry of each link and the density of the material                
used. MDF is a light weight material when cut into pieces of this size, so the small mass and                   
inertia values make sense. 
 
The system of equations was derived by analysing the reaction forces acting on each joint and                
the moments about each link. Newton’s third law was also used to derive equations relating               
equal and opposite reaction forces. Using equations (1)-(13), a 13x13 matrix A can be formed               
and solved by rearranging the system of equations from Ax = b into x = bA​-1​. All reaction                  
forces at each joint and the torque of the motor input link will be found by solving the                  
following system of equations in MATLAB lines 40-52 of the file titled “dynamicAnalysis.” 
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Figure 28: Reaction forces and torque solved in Matlab 

      
Figure 29: System of equations in Matlab 

  
The torque of the input link vs was graphed to determine any relationships. When analyzing       θ2         
the graph in figure #, the torque seems to vary in a parabolic pattern. This means that                 
throughout the rotation of the link, the torque required to move the input link peaks at some                 
point in the rotation where radians. The torque also becomes momentarily zero     − .9θ2 = 0         
where the angle and .− .6θ2 ≈ 1 − .6θ2 ≈ 0  
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Figure 30: Graph of input torque vs θ​2 

 

Coupler Curve Analysis  
 
Curve fitting is used to get discrete data for obtaining intermediate estimates. Various methods              
of curve fitting were used to analyse coupler curve for all of the precision points. The first                 
method used is least square regression to obtain first order, quadratic order , cubic order and                
higher order curve fits. Least square regression method is fitting straight line to pair              
observation, the objective of this is to minimize errors. The next method is interpolation              
method. Interpolation estimates the function value at intermediate point method the precision            
point/precise point. For this project, both these methods are used in calculating or analyzing the               
curve fit. The advantage of curve fitting is to model mathematical process gotten from the data;                
it makes it possible to estimate the parameter which gives an insight into the process.  
 
The plot below shows the curve fit for first to fourth order interpolation and Newton divided                
difference interpolation coupler curve. This process was done by taking 10 points that go              
through the precision points and making a curve fitting model for it to give an estimate to the                  
path. The 4 bar mechanism will go through the calculated curve and plot the graph of coupler                 
vs theta 2 on MatLab. The plot clearly shows that our path is very similar to the curve fitting                   
we are getting in the x-axis direction.  
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Figure 31: Graph of coupler vs θ​2​ (x direction) 

 
 
The plot below also shows the path we get after calculating the curve fit with least square                 
regression and newton divided interpolation and this plot also shows that it is very similar to                
the path we are getting from the 4 bar mechanism in the y-axis direction. For this direction we                  
did the same thing as for the x direction by taking 10 point from the precision point and making                   
a curve fitting plot in Matlab to give the estimate of the process. 
 
 

 
Figure 32: Graph of coupler vs θ​2​ (y direction) 
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Conclusion 
 
The 4-bar mechanism proposed for this project was successfully created and analysed in             
various approaches. When approaching the design of the mechanism, it was decided that the              
best algorithm to determine the design of the links was function generation. Since the precision               
points wanted were known, function generation was used to find the appropriate lengths of              
each link that resulted in the smoothest motion. Links 1 and 3 were calculated to be the same                  
length, which seems incorrect, but calculations and animations show that these are the most              
appropriate lengths, with an Fval of 0.00013534.  
 
The kinematic analysis allowed the observation of the linear velocities and accelerations of the              
center of masses of the input, coupler, and output links. As mentioned in the “Kinematic               
Analysis” section, the figures allowed the hypothesis that a mechanical singularity occurs when             
θ​2 ≅ -2.75 rad. This hypothesis was formed because the plots revealed that when θ​2 ≅ -2.75 rad                  
the linear velocities and accelerations of the coupler and output links spiked to outlier values.               
This hypothesis continues to hold because the linear velocity and acceleration plots of the input               
link did not demonstrate the same spike. The input link’s did not and should not have a spike                  
because the mechanical sensitivity in motion occurs only between the coupler and output link;              
the input link should continue to move controllably. 
 
When the dynamics of the mechanism were inspected, a system of equations had to be solved                
to find the torque of the input link and reaction forces of each joint. A parabolic relationship                 
between the torque and the reference angle, , was found by graphing the two against each       θ2          
other.  
 
The least squares regression method and the Newton method divided difference interpolation            
methods were used to to curve fit a plot of the coupler’s centre of mass (COM) vs theta 2.                   
When looking at the graphs in figures 31 & 32, it’s very clear that the more accurate method                  
for the given data set is least squares regression. After the 4th iteration, the curve fit becomes                 
very accurate to the plotted data points. Whereas the Newton divided difference method             
provides a poor representation of the plotted data points. 
 
Overall, despite the said errors with velocity and acceleration analysis in the expanded             
numerical solution, the designed 4-bar mechanism gardening tool was successfully created and            
analysed using many methods. Each method produced accurate and similar results and the             
prototype showed smooth, curved motion, as expected. Future prototypes may follow these            
steps and get a reliable result. 
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