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1. Introduction 
From the complex algorithms used for image stabilization to the commonly used cruise control 
feature in cars, the application of electronic control is evident in many aspects of modern 
technology. Control theory is an essential toolbox for any engineer attempting to design a 
mechatronic system. By utilizing standardized methods for controller design such as negative 
feedback, PID control and lead-lag compensators, the engineer can ensure stability and optimal 
performance for the system. First, an open loop system is explored using a LRC circuit as the 
plant by modelling in MATLAB. Next, a negative feedback based system is created by routing 
the output into the input as an error signal. In the third section, circuits for proportional, integral 
and derivative controllers are designed separately and combined to create a tunable PID 
controller. Finally, implementation of lead-lag compensator circuits are explored. For each 
section various plots such as Bode, Nyquist and root locus are generated in MATLAB to offer 
insight into stability and the effects of varying parameters; LTSPice is used to test and confirm 
findings. The differences in results will be explained in detail in the discussions section. 

2. Theory 
This project will demonstrate real world applications of negative feedback control in electronic 
systems using LTSpice and MATLAB models. Concepts discussed in lectures will be thoroughly 
utilized to predict and confirm system behaviour. 

2.1 LRC System Analysis 
The first system is an Open Loop one created using a simple LRC circuit as shown in Figure 1 
and 2. 

 

 

 

                                                                          

Using impedance, we may calculate the transfer function as: 

𝐺(𝑠)  =  
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 =  

𝑍𝑜𝑢𝑡

𝑍𝑖𝑛
=

𝑍𝐶

𝑍𝐼  +  𝑍𝑅  +  𝑍𝐶
 

Figure 1: LRC Circuit Figure 2: Open Loop Transfer Function 

(1) 
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By multiplying both the top and bottom by the term 𝑠
𝐿
 we obtain equation 2: 

𝐺(𝑠)  =
1

𝐿𝐶
𝑠2  +  𝑅

𝐿 𝑠 + 1
𝐿𝐶

 

The resulting transfer function is recognizable as a standard second order system. By putting in 
the given values for the inductor, capacitor and resistor, it is possible to simulate the physical 
system in MATLAB, and generate useful graphs as described below. 

 

Step Response: Shows the system’s response to a step input 

Bode plot: Shows the frequency response of a system in terms of logarithmic magnitude and 
phase. 

Root Locus: Shows system stability as a function of a gain parameter using the poles and zeros 
in the complex s-plane. This technique is used to develop stability criterion. 

Nyquist: Shows the frequency response of a system with feedback. This technique is used to 
assess the stability of a system with a delay.  

 

The resulting graphs will then be compared to ones generated in LTSpice by varying system 
parameters. 

 

2.2 Negative Feedback 
Next, we will develop a system that uses negative feedback to reach a desired outcome. This may 
be modeled by simply feeding the output back into the input of the system as shown in figure 3. 

 

 

 

 

 

 

 

(2) 

 

Figure 3: Negative Feedback System 
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In order to produce an electronic feedback output, an ideal op amp circuit may be employed as 
shown in figure 4. This configuration is typically called a differential amplifier. 

 

 

 

 

 

 

 

 

Using the principle of superposition the circuit may be solved by summing V’ when each of the 
voltages are isolated and set to 0. 

If V2 = 0, then the circuit becomes an inverter so 

𝑉′1 =  −𝑉1(
𝑅4

𝑅3
) 

If V1 = 0, then the circuit becomes a non-inverting amplifier where Va is the voltage referred to 
ground at the non-inverting input of the operational amplifier 

𝑉′2 =  𝑉𝑎 (1 +
𝑅4

𝑅3
) 

 𝑉𝑎 = 𝑉2 (
𝑅2

𝑅1  +  𝑅2
) 

Finally, using the principle of superposition V’ can be determined as the sum of V’1 and V’2 

 𝑉′ =  −𝑉1(
𝑅4

𝑅3
)  +  𝑉2 (

𝑅2

𝑅1  +  𝑅2
)(1 +

𝑅4

𝑅3
) 

Taking all the resistors as having the same value, the final relationship is 

𝑉′ =  𝑉2  − 𝑉1  

By relating it to the block diagram in figure 3 we can determine the analogous variables by  

𝑉𝑜𝑢𝑡  =  𝑉𝑟𝑒𝑓 − 𝑉𝑒𝑟𝑟 

Using this circuit, we can expect greater accuracy than the previous case due to the fact that the 
input is varied based on an error signal. This prediction will be confirmed in the results using 
MATLAB simulations. 

 

Figure 4: Negative Feedback in a Circuit 

(3) 

 

(4) 

 
(5) 

 

(6) 

 

(7) 

 

(8) 

 



8 
 

2.3 Controller Design 
By combining the first two circuits, it is possible to create a negative feedback system with a 
controller as shown in Figure 5 

The following subsections will explore two different designs for K(s): PID controller and 
Lead/Lag compensator. MATLAB will be used to assess the performance of the overall system 
in terms of stability, response time, oscillatory behaviour, and steady state offset. The final 
designs will be tested out in LTSPice 

 

2.3.1 PID Control 
A PID controller is made of three components; a proportional, integral and derivative controller. 
When combining these three we are able to control all attributes of a response signal in terms of 
overshoot, stability, steady-state, and response time.  Initially, each circuit will be explored 
separately before being combined as shown in figure 6. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Negative Feedback System with Controller - Circuit Implementation 

 
Figure 6:  PID Controller 
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Figure 7: Proportional Op-Amp Circuit 

Figure 8: Differential Op-Amp Circuit 

 

First, a proportional controller may be designed using an op-amp circuit as shown in figure 7.  

 

 

     

𝐾𝑝  =  −
𝑅2

𝑅1
 

 
 

Next, a derivative controller is created by adding a capacitor to the proportional op amp circuit as 
shown in figure 8. 

 

 

𝐾𝑑  =  −
𝑅3𝐶3𝑠

𝑅4
 

 

 

 

If we take R4 to be much smaller than R3 then the equation can be simplified to: 

𝐾𝑑  =  −𝑅3𝐶3𝑠 
By moving the capacitor into the feedback path and replacing the resistor, it is possible to create 
an integral controller as shown in figure 9. 

 

  

𝐾𝑖  =  −
1

𝑅5𝐶5𝑠 

 

 

 

 

 

(9) 

(10) 

(11) 

Figure 9: Integral Op-Amp Circuit 

(12) 
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Finally, all 3 controllers are combined using the summing circuit illustrated in figure 10. 
Equation 15 shows the final relationship between 

 

𝑉𝑠  =  − (𝑅′𝐼′) 𝑉𝑒𝑟𝑟  =  −𝑅′ (𝐼𝑝  +  𝐼𝑖  +  𝐼𝑑) 𝑉𝑒𝑟𝑟 

𝑉𝑠 =  −𝑅′ (
𝑉𝑝

𝑅′
 +  

𝑉𝑖

𝑅′
 + 

𝑉𝑑

𝑅′
) 𝑉𝑒𝑟𝑟 

𝑉𝑠 =  − (𝑉𝑝  +  𝑉𝑖 +  𝑉𝑑) 𝑉𝑒𝑟𝑟  

 

 

 

Using MATLAB, the PID controller is tuned to obtain the most favorable response by varying 
values of Kp, Kd and Ki. 

2.3.2 Lead-Lag Compensation 
Another way to tune the performance of a system is by improving the gain and phase margins 
using a lead and/or lag compensator circuit.  

2.3.2.1 Lag Compensator Design 
A lag compensator adds a negative phase to the system over a specified frequency range. The 
main effect that is brought about by a lag compensator is that it adds gain to the system at low 
frequencies. The magnitude of the gain is equal to ‘⍺’.The effect brought about by this gain is 
that it lowers the steady-state error of the closed-loop system by a factor of ‘⍺’.  

The negative effect of the lag compensator is the negative phase that is between the two corner 
frequencies - the specified frequency range that is affected by the addition of the lag 
compensation. The negative phase added can increase up to -90 degrees. Therefore, care must be 
taken to ensure that the phase margin of the open-loop system with the lag compensator is still 
satisfactory. 

A lag compensator may be implemented as shown in Figure 11. 

 

  

 

 

Figure 10: PID Gain Circuit 

(13) 

(14) 

(15) 

Figure 11: Lag Compensator 

(16) 
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Simplifying the equation we can obtain: 

𝑉𝑜(𝑠)
𝑉𝑖(𝑠)

=
𝑅2

𝑅1  + 𝑅2
(

𝐶𝑠 +  1
𝑅2

𝐶𝑠 +  1
𝑅1  +  𝑅2

)  

By setting R1 = 1kΩ, R2 = 1kΩ, and C2 = 1µF, the transfer function may be calculated for the 
first MATLAB simulation case as 

𝑉𝑜(𝑠)
𝑉𝑖(𝑠)

=
1
2

(
𝑠 +  1000
𝑠 +  500

)  

By setting R1 = 2kΩ, R2 = 1kΩ, and C2 = 1µF, the transfer function may be calculated as for the 
first MATLAB simulation case 

𝑉𝑜(𝑠)
𝑉𝑖(𝑠)

=
1
3

(
𝑠 +  1000

𝑠 +  333.33
)  

2.3.2.2 Lead Compensator Design  
A lead compensator adds a positive phase to the system over a specified frequency range. The 
main effect that is brought about by a lead compensator is that it adds gain to the system at high 
frequencies. The magnitude of this gain is equal to ‘β’. The effect brought about by this gain is 
that it increases the crossover frequency, which help decrease rise time and settling time of the 
system, allowing a faster transient response.  

The negative effect of a lead compensator is the added gain to high frequencies which results in 
the undesirable amplification of high frequency noise. Also, the addition of the positive phase 
helps improve the phase margin of the system, thus improving the stability of the system.  

The circuit implementation of a lead compensator is explored as illustrated in Figure 12. 

 

 

 

(17) 

(18) 

(19) 

Figure 12: Lead Compensator 

(20) 
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As with the lag circuit, by simplifying the equation we can obtain: 

𝑉𝑜(𝑠)
𝑉𝑖(𝑠)

=
(𝑅1𝑅2𝐶)𝑠 +  𝑅2

(𝑅1𝑅2𝐶)𝑠 +  𝑅1  +  𝑅2
  

 

By setting R1 = 1kΩ, R2 = 1kΩ, and C2 = 1µF, the transfer function may be calculated for the 
MATLAB simulation as 

𝑉𝑜(𝑠)
𝑉𝑖(𝑠)

=
𝑠 +  1000
𝑠 +  2000

  

 

Finally, by combining both circuits with a proportional controller a lead lag compensator is 
created as shown in Figure 13. 

 

 

And the equation for the final signal may be obtained by applying block diagram rules as: 

 

Figure 1: LRC Circuit 

(2) 

(22) 

Figure 13:  Lead Lag Compensator LTSpice Model 

(23) 
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3. Results 

3.1 LRC System Analysis 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 14: LRC step response 

Figure 15: LRC Root Locus 
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Figure 16: LRC Nyquist Plot 

Figure 17: LRC Bode Plot with Phase Margins 
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Figure 18: LRC LTSpice Simulation Step Response 

Figure 19: LRC LTSpice Simulation Bode Plot 
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Figure 20: LRC 5times Component Increase Step response 

Figure 21: LRC 5times Component Increase Root Locus 
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 Phase Margin 

Original  17.6o 

5 x Resistance  99.4o 

5 x Inductance  7.86o 

5 x Capacitance  40.1o 
Table 1. LRC 5times Component Increase Phase Margin Difference 

 

 

Figure 22: LRC 5times Component Increase Nyquist Plot 
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3.2 Negative Feedback 
 

  

Figure 23: LRC 5times Component Increase Bode Plot 

Figure 24: Open Loop & Closed Loop Step Response 



19 
 

     

3.3 Controller Design 

3.3.1 PID Control 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Root Locus (Left: Open-Loop, Right: Closed-Loop) 

Figure 26: P Controller 
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Figure 27: PD Controller 

Figure 28: PI Controller 
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Figure 29: PID Step Response 

Figure 30: LTSpice PID Step Response 
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3.3.2 Lead-Lag Compensation 

3.3.2.1 Lag Compensator Design  

MATLAB Simulation 

Case Ⅰ:  R1 = 1KΩ, R2=1KΩ, C2=1µF 

 

Figure 31: Step-Response of CL w/ Lag Compensator 

Figure 32: Bode Plot w/ Lag Compensator 
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Case Ⅱ: R1 = 2KΩ, R2=1KΩ, C2=1µF 

Figure 33: Nyquist Plot w/ Lag Compensator 

Figure 34: Increased R1 Closed Loop Lag Controller Step Response 
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Figure 35:  Increased R1 Lag Controller Bode Plot 

Figure 36: Increased R1 Lag Controller Nyquist Plot 
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LTSpice Simulation 

Case Ⅰ: R1 = 1KΩ, R2=1KΩ, C2=1µF 

 

Case Ⅱ: R1 = 2KΩ, R2=1KΩ, C2=1µF 

 

 

 

 

 

 

 

  

Figure 37: LTSpice Lag controller Step Response 

Figure 38: LTSpice Increased R1 Lag Controller Step Response 
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3.3.2.2 Lead Compensator Design  

MATLAB Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Closed Loop Lead Controller Step Response 

Figure 40: Lead Controller Bode Plot 
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3.3.2.3 Lead-Lag Compensator Design  

MATLAB Simulation 
 

 

  

Figure 41: Lead Controller Nyquist Plot 

Figure 42: Step Response w/ Lead Compensator at OL PM  frequency 
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Figure 43: Bode Plot 

Figure 44: Nyquist Plot 
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Figure 45: Lead-Lag Controller Step Response 

Figure 46: Lead-Lag Controller Bode Plot 
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Adding Kp 
 

 

 

  

Figure 47: Lead-Lag Controller Nyquist Plot 

Figure 48: Step Response w/ Lead-Lag Controller w/ Proportional Gain of 10 
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Figure 49: Bode plot of Lead-Lag Controller w/ Proportional Gain of 10 

Figure 50: Nyquist plot of Lead-Lag Controller w/ Proportional Gain of 10 



32 
 

 

 

 

 

Figure 51:  Step-response of Lead-Lag Controller w/ Proportional Gain of 40 

Figure 52: Bode plot of Lead-Lag Controller w/ Proportional Gain of 40 
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Figure 53: Nyquist plot of Lead-Lag Controller w/ Proportional Gain of 40 

Figure 54:  Step Response of Lead-Lag Controller w/ Proportional Gain 80 
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Figure 55: Bode plot of Lead-Lag Controller w/ Proportional Gain of 80 

Figure 56: Nyquist plot of Lead-Lag Controller w/ Proportional Gain 80 
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Figure 57: Step Response of Lead-Lag Controller w/ Proportional Gain of 100 

Figure 58: Bode plot of Lead-Lag Controller w/ Proportional Gain of 100 
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  Figure 59: Nyquist plot of Lead-Lag Controller w/ Proportional Gain of 100 

Figure 60: Step-response of Lead-Lag Controller w/ Proportional Gain of 200 



37 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 61: Bode plot of Lead-Lag Controller w/ Proportional Gain of 200 

Figure 62: Nyquist plot of Lead-Lag Controller w/ Proportional Gain of 200 
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Figure 63: Step-response of Lead-Lag Controller w/ Proportional Gain of 400 

Figure 64: Bode plot of Lead-Lag Controller w/ Proportional Gain of 400 
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Figure 65: Nyquist plot of Lead-Lag Controller w/ Proportional Gain of 400 

Figure 66: Step-response of Lead-Lag Controller w/ Proportional Gain of 800 
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Figure 67: Bode plot of Lead-Lag Controller w/ Proportional Gain of 800 

Figure 68: Nyquist plot of Lead-Lag Controller w/ Proportional Gain of 800 
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3.3.2.4 Lead-Lag Compensator Design Testing 

MATLAB Simulation 
Case I: R=100 Ω, L=100mH,  C=47µF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69: Step response of Lead-Lag Controller w/ 100 Ω 

Figure 70: Bode plot of Lead-Lag Controller w/ 100Ω 
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Case II: R=10 Ω, L=10mH, C=47µF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 71: Nyquist plot of Lead-Lag Controller w/ 100Ω 

Figure 72: Step-response of Lead-Lag Controller w/ 10mL 
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Figure 73: Bode plot of Lead-Lag Controller w/ 10mL 

Figure 74: Nyquist plot of Lead-Lag Controller w/ 10mL 
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Case III: R=10 Ω, L=100mH, C=4.7µF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 75: Step-response of Lead-Lag Controller w/ 4.7µF 

Figure 76: Bode plot of Lead-Lag Controller w/ 4.7µF 
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LTSpice Simulation  
Case I: R=100Ω, L=100mH, C=47µF 

 

 

Figure 77: Nyquist plot of Lead-Lag Controller w/ 4.7µF 

Figure 78:  Step-response of LTSpice OL w/ 100 Ω 
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Case II: R=10Ω, L=10mH, C=47µF 
 

 

 

 

 

Figure 79: Step Response of LTSpice CL Lead-Lag Controller w/ 100Ω 

Figure 80: Step-response of LTSpice OL w/ 10mH 
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Case III: R=10Ω, L=100mH, C=4.7µF 

 

 

 

Figure 81: Step-response of LTSpice CL Lead-Lag Controller w/ 10mH 

Figure 82: Step-response of LTSpice OL w/ 4.7µF 
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4. Discussion 

4.1 LRC System Analysis  
Knowing the impedance of the components of the circuit being: ZL = Ls,  ZR = R,  ZC = 1/Cs, 
and using component values of L = 100mH, R = 10Ω, C = 47uF we are able to obtain the 
transfer function G(s) of the system to be: 

𝐺(𝑠)  =  
212765.96

𝑠2  +  100𝑠 +  212765.96
 

As we can see the simple circuit creates a second order system. From the obtained transfer 
function, we were able to simulate the system and generate the plots in the results section, and 
determine that the system is in fact stable.  

Using the open loop transfer function obtained from the provided values we are able to observe 
that the step response has 70% overshoot and oscillates around 1 until it settles after around 0.1 
seconds with no steady state error as seen in figure 14. It can be seen that the system is stable 
from the step response but to further confirm we look at the root locus plot. From simulation we 
were able to find the roots of the system to be at -50 ± 458.55i as it can be seen in figure 15. The 
placement of the poles being in the left hand plane shows us that the system is stable along with 
knowing the degree of the system is 2, we can observe that as K increases from 0 to infinity the 
roots only moving vertically along the imaginary axis and never cross over to the right hand 
plane; therefore the system won’t become unstable unless externally acted upon.  

Figure 83: Step-response of LTSpice CL Lead-Lag Controller w/ 4.7µF 

(24) 
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To further investigate the stability of the system we can check the nyquist and bode plots, figures 
16 and 17. From the nyquist plot we can see that the open loop system does not encircle the point 
(-1,0) which means that the system is stable according to the Cauchy theorem; however, from the 
bode plot it is evident that the system has a phase margin of only 17.6o. The phase margin 
implies that a time delay of 17o could be added to the system before system becomes unstable. 
Meanwhile, the gain margin being infinite in our system shows that if only gain is, no amount of 
gain increase will force the system to become unstable.  

Comparing the MATLAB plots to the LTSPice Simulations in figures 18 and 19 offers 
confirmation that our model is correct as the step response can be seen to reach peak value of 
1.71, and settles within 100ms. The phase margin from both simulations occur around 645rad/s 
at 17degrees. 

After verifying the stability of the system, the effects of changing each parameter individually is 
explored by increasing each value by 5 times the original number. One again plots were 
generated for the sake of comparison. 

In figure 20, it seems that increasing the inductor to 500mH causes the system to become more 
underdamped, causing oscillations continue for 5 times longer before resting at the steady state 
value. Increasing the capacitance to 235uF only slightly decreased the overshoot and increased 
the rise time, while maintaining a consistent settling time with the original. By far the best 
response came from increasing the resistor to 50Ω, with the smallest overshoot of only 13% and 
settling time of 0.025seconds. From an electrical perspective these results are consistent with 
expectations - as increasing the resistance decreases the current which will create a smaller 
inrush current on the inductor providing a more stable response; whereas, increasing the inductor 
without modifying the circuit to reduce the current will cause higher inrush current resulting in 
large voltage spikes. Finally, the increase in capacitance will cause higher current spikes when 
the circuit is initially connected which causes the rise time to spike. 

Comparing the step response with figures 21 and 22, the root locus and nyquist plots 
respectively, it is apparent that the system with 5 times increase in resistance is indeed the most 
stable as the roots are further in the left hand plane, and the increased inductance moves the roots 
closer to the origin. The increased capacitance can be seen to occur closer to the real axis 
compared to the original which can be is an indication the system becoming closer to being 
critically damped.  

Observing figure 23 and table 1 for the phase margins between the systems we are again able to 
verify that the higher resistance increases the stability of the system by roughly 6 times, while 
the higher inductor dropped the stability by over half.  

4.2 Negative Feedback  
Recalling, negative feedback is a process in which the output of the system is fedback to system 
input as an error signal. The feedback process in an electronic circuit is achieved as explained in 
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the theory section. The objective of this section was to check if a closed-loop system without a 
controller has an improved step-response as compared to an open-loop system.  

Figure 24 in Results shows the step-response for the open-loop and closed-loop system. The 
closed-loop system response is without a controller. Comparing the two step-responses, it is 
evident that the closed-loop system has a greater steady-state error, since the final value of the 
closed-loop system is half of that achieved by the open-loop system. Also, the closed-loop 
system has no overshoot meaning the system is relatively more stable. Figure 25 in Results show 
the Root locus plot for both the open and closed-loop system. Analyzing the plots, both systems 
have the same settling time since the real part of the poles of each system have the same value.    

All in all, analyzing the step-response and the root locus of the open-loop and closed-loop 
system, we can conclude that the closed-loop system without a controller does not significantly 
improve the system’s behaviour. This may be further confirmed through the MATLAB 
simulation for step-response as shown in figure 24 - without a controller, the closed-loop system 
is relatively stable as there is no overshoot, but the steady-state error increased significantly.   

4.3 PID Control  
A PID controller is made of three components; a proportional, integral and derivative controller. 
When combining these three we are able to control all attributes of a response signal in terms of 
overshoot, stability, steady-state, and response time. 

From theory section 2.3.1, it is possible to combine the three op-amp circuits to create a PID 
controller with full control of the gains used. However, the controllers may be run separately to 
determine what effects on the system. Starting with a simple P controller, then a PD controller, 
and finally a PI controller.  

First, to create the P controller Ki and Kd are set to zero, and KP is independently varied from 2 to 
20. The resulting figure 26, it is apparent that for a small KP value the oscillations are slightly 
greater than that of the open loop system, and the steady-state error is huge. As KP is increased 
the steady-state error decreases till it reaches zero; however, the overshoot and oscillations of the 
system increase dramatically. 

Next, a PD controller is devised by setting KP to 4, Ki to 0 and then varying Kd from 2 to 20. 
Figure 27 shows that regardless of the value of Kd the steady state error is constant, and always 
below the desired value. It is evident that the Kd value is directly proportional to the settling 
time.  

Finally, a PI controller is done by setting KP again to 4, Kd to 0 and then varying Ki from 2 to 20. 
As seen in figure 28 a larger Ki gain causes the response to reach zero steady-state error faster 
than a small Ki.  

From the independent tests we can conclude that the proportional gain has the greatest effect of 
driving the response to the input signal - as in the larger the KP, the faster the system will rise. In 
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contrast, the derivative gain acts against KP by pushing the signal down to balance the over 
shooting that occurs; however, a larger Kd to cancel the oscillations will also result in a longer 
settle time. Finally, the integral gain is used to minimize steady-state error, while also decreasing 
settling time.    

To obtain the desired output as seen above in figure 29 the gain values selected were; KP = 4,  Ki 
= 14,  Kd = 12. From these desired gain values, we then determined real world component values 
to construct the circuitry in LTspice which can be found in the appendix figure 84. By using true 
component values the gain values varied slightly from the ideal case which came out to KP = 
4.03,  Ki = 14.18,  Kd = 11.985. 

4.4 Lead-Lag Compensator  
The objective of this section was to design a Lead-lag compensator for the closed-loop system to 
improve the system’s response behaviour. Before designing the lead-lag compensator for a 
simple RLC circuit, the effects of Lead Compensator and Lag Compensator on our closed-loop 
system was analyzed by plotting bode and nyquist plots for the open-loop systems with the 
respective controller. The following text will discuss the conclusions drawn based on the figures 
presented in the Results section. 

Lag Compensation 

Initially, we analyzed a Lag Compensator. Lag compensator essentially yields an improvement 
in the steady-state accuracy at the expense of increasing the transient response time.  

 The effect of lag compensator at different frequency ranges was investigated using MATLAB 
and LTSPice as mentioned in the Theory section of Lead-Lag Compensation. The results of this 
experiment are included in the Result section under Lag Compensator design, labelled as Case Ⅰ 
and Case Ⅱ. The difference between the two cases is the distance between the pole and the zero 
introduced by the lag compensator. The corner frequencies are further apart in Case Ⅱ as 
compared to Case Ⅰ.  

Figure 31 shows the step response of the system with the addition of the Case Ⅰ-Lag compensator 
to the system. The open-loop system without the lag compensator had a phase margin of 17.6 
degrees. The lag compensator was added to the original system with corner frequencies of 1000 
and 2000 [rad/s]. The bode plot in figure 32 shows the effects of an added lag compensator on 
the original open-loop system. The compensator’s gain is unity at low frequencies which means 
the lag compensator didn’t improve the steady-state accuracy of the original closed-loop system. 
Moreover, the gain of the lag compensator at high frequencies is not 1, meaning compensator has 
affected the transient response and the stability characteristics of the system.  

The effect on the transient response is evident in the MATLAB simulation and LTSPice, as 
shown by figures 32 and 37. A Lag compensator shifts the root locus of the original closed-loop 
system to the right, slowing down the transient response of the system by increasing settling 
time. The relative stability of the system is reduced by the addition of the lag compensator; the 
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nyquist and bode plots of the system show that the phase margin of the new open-loop system 
has reduced to 2.95 degrees from 17.6 degrees. The phase margin is a measure of how much 
delay a system can handle before it becomes unstable.  

Figure 34 shows the step response of the system with the addition of the Case Ⅱ-Lag 
compensator to the system. The lag compensator in this case was added to the original system 
with corner frequencies of 1000 and 3000 [rad/s]. The bode plot in figure 35 shows the effect of 
the added Case-Ⅱ lag compensator on the original open-loop system. The negative phase 
introduced by this lag compensator in the defined frequency range has reduced the phase margin 
of the system from 17.6 degrees to -2.69 degrees. The negative phase margin is an indication that 
the lag compensator has shifted the root locus of the original system to the unstable region - the 
left side of the complex s-plane. This explains the unstable behaviour shown by the MATLAB 
simulation and LTSpice, in figures 34 and 38 respectively.  

Lead Compensation 

Next, the lead compensator is explored which essentially yields an improvement in the transient 
response of the system. The effects of a lead compensator at corner frequencies of 1000 and 
2000 [rad/s] was investigated using MATLAB and LTSpice as mentioned in the Theory section 
2.3.2., and results of this experiment are included in the Result section under Lead Compensator 
design.  

Figure 39 shows the step response of the system with the addition of the lead compensator to the 
system. The open-loop system without the lag compensator had a phase margin of 17.6 degrees, 
and the lead compensator was added to the original system with corner frequencies of 1000 and 
2000 [rad/s]. The bode plot in figure 40 shows the effect of the added lead compensator on the 
original open-loop system. Gain is unity at low frequencies meaning the lead compensator does 
not affect the steady-state accuracy of the original closed-loop system. Moreover, at high 
frequencies the gain is no longer 1 meaning the lead compensator has affected the transient 
response and the stability characteristics.  

The effect on the transient response can be noticed in the MATLAB simulation as shown by 
figure 39. A Lead compensator increases the crossover frequency which decreases the settling 
and rise time of the system’s response, thereby resulting in a faster transient response. The 
relative stability of the system is also increased by the addition of the lead compensator, as the 
nyquist and the bode plot of the system show that the phase margin of the new open-loop system 
has increased to 42.1 degrees from 17.6 degrees. The response of the system when the PID 
controller was improved in all conditions. Overshoot reduced from 70% down to roughly 20%, 
settling time also decreased by 50ms. 
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Lead-Lag Compensator Design 

Moving on from the analysis of the Lag and Lead compensators, s Lead-Lag compensator for our 
simple LRC circuit was designed to improve its transient response and reduce the steady-state 
error independently. During the design process, the transient response of the system was 
improved first, followed by improvement of the steady-state accuracy. The disadvantage in 
improving the steady-state error first is that the improvement of the transient response in some 
cases yields some decay in the improved steady-state error.  

Note: Calculations for the design process can be found in Appendix, for your reference. 

To improve the transient response of the system, a lead compensator is added to the original 
system. Recalling from the theory section, a lead compensator adds a positive phase at the 
specified corner frequencies and adds a gain at high frequencies. The positive phase, if added at 
the gain crossover frequency of the original open-loop system, will increase the phase margin of 
the new system. The increase in phase margin makes the new system relatively more stable. 
Also, the added gain at high frequencies increases the crossover frequency, which helps lower 
the settling and rise time, resulting in a faster transient response by the system. Keeping these 
facts in mind, the lead compensator was added at the phase margin frequency of the original 
open-loop system to not only improve the transient response but also make the system relatively 
more stable. The phase margin of the original open-loop system is 17.6 degrees and the gain 
crossover frequency 645 [rads/s]. 

Figure 42 shows the original and improved transient response of the system. Figure 43 is the 
bode plot of the original open-loop system and the new open-loop system. It is apparent that the 
phase margin of the new open-loop system has increased from 17.6 degrees to 75.7 degrees, 
resulting in greater relative stability of the closed-loop system. As expected, the transient 
response of the system with the lead compensator is much faster than the original closed-loop 
system with no controller as shown in figure x. 

Next, to improve the steady-state accuracy of the system, a lag compensator is added to the 
improved system. Recalling from the theory section, a lag compensator adds a negative phase at 
the specified corner frequencies and adds a gain at low frequencies. The negative phase, if added 
at the improved gain crossover frequency of the improved open-loop system, decreases the phase 
margin of the improved system, and consequently yields some decay in the improvement of 
transient response, which was designed first. Therefore, care had to be taken to ensure that the 
lag compensator is applied at a frequency lower than the improved gain crossover frequency so 
that the transient response and stability characteristics of the system are not significantly altered. 
Keeping these facts in mind, the lag compensator was added at a frequency of 61.3 [rads/s] 
which is well below the improved gain crossover frequency of 524 [rads/s].  

Figure 46 is the bode plot of the open-loop system and the improved open-loop system. It is 
evident from the magnitude plot that the lag compensator has increased the magnitude of the 
open-loop system at low frequencies, resulting in an reduced steady-state error. The addition of 
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the lag compensator to the system also improved the phase margin from 75.7 degrees to infinity. 
This means the improved system is relatively more stable and can withstand any amount of time-
delay. Figure 45 is the step-response of the improved system with the Lead-Lag controller. 
Comparing this step-response to that in figure 42, it seems the addition of the lag compensator 
yields a slight decay in the previously improved transient response.  

Finally, a proportional gain controller is added to the system to push the system’s response to 1 
by testing various Kp. The proportional gain Kp has certain limitations depending on the gain 
margin of the improved system. Recalling from theory section, gain margin is a measure of how 
much additional gain can be added to the system before the system becomes relatively unstable. 
Therefore, increasing Kp decreases the phase margin of the system as the nyquist plot of the 
improved open-loop system is stretched out. Therefore, the objective of utilizing proportional 
gain is to get as close to the desired value as possible, while ensuring that the phase margin of 
open-loop system with the lead-lag compensator is improved as compared to the original open-
loop system without lead-lag compensator.  

Figures 48 to 68 show step-responses, bode plots and nyquist plots for different proportional 
gains ranging from 10-800. It is evident that proportional gains within the range of [10,200] have 
an improved phase margin as compared to the original open-loop system without a lead-lag 
compensator. The step response achieved within this proportional gain range is not perfect but 
the system is relatively more stable. Proportional gains in the range of (200, 800], have a better 
step-response but the systems are relatively less stable as compared to the original open-loop 
system. Our lead-lag compensator has a proportional gain of 100 - it provides a step response of 
0.96 in 0.06 seconds and has a phase margin of 28.9 degrees. The original open-loop system with 
no compensator provided a step response of 1 in 0.1 seconds and had a phase margin of 17.6 
degrees. Therefore, it is fair to say that addition of the lead-lag compensator has improved 
transient response and made the system relatively more stable.  

Lead-Lag Compensator Design Testing 

Following the design of our lead-lag compensator, it was tested for robustness with different 
plants. The step-response, bode plot and nyquist plot for each plant were plotted in MATLAB 
and LTSpice simulations were conducted. These can be found in the Lead-Lag Compensator 
Design Testing section under Results for your reference.  

Robustness is essentially a measure of system stability. Gain and Phase margin are the two 
quantities used to indicate the margin the system has before it becomes unstable. The three plants 
are referenced as Case I, Case II, and Case III. In each plant, two of the components of the LRC 
circuit are the same as the original plant while the third component is increased by a factor of 10.  

In Case I, the resistance was increased by a factor of 10, from 10Ω to 100Ω. Figure 69, 70 & 71 
are the step-responses of the open-loop and closed-loop system, bode and nyquist plots for the 
open-loop system with and without the designed lead-lag compensator. The step-response of this 
plant shows that the closed-loop response of the system was much faster than the open-loop 
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system without the controller, though not the best step-response. However, bode plot shows that 
the open-loop system with the designed lead-lag compensator had a better phase margin than the 
open-loop without the compensator, making the closed-loop system relatively more stable. Also, 
the nyquist plot shows that the open-loop system without the designed lead-lag compensator had 
a larger gain margin than the open-loop system with the designed lead-lag compensator, which 
means that the system without the compensator can withstand more gain before becoming 
unstable as compared to the system with the designed lead-lag compensator.  

In Case II, the inductance was increased by a factor of 10, from 100mH to 10mH. Figure 72, 73 
& 74 are the step-response of the open-loop and closed-loop system, bode and nyquist plot for 
the open-loop system with and without the designed lead-lag compensator. The step-response of 
this plant shows that the closed-loop response of the system was much faster and had more 
overshoot than the open-loop system without the controller. The bode plot shows that the open-
loop system without the compensator had a better phase margin than the open-loop with the 
designed compensator, making the closed-loop system relatively less stable. The nyquist plot 
shows that the open-loop system without the designed lead-lag compensator had a larger gain 
margin than the open-loop system with the designed lead-lag compensator, which means that the 
system without the compensator can withstand more gain before becoming unstable as compared 
to the system with the designed lead-lag compensator. All in all, the compensator in this case 
made the system less robust as phase margin and gain margin of the open-loop system without 
the compensator were relatively better. Therefore, the addition of the compensator made the 
system relatively less stable.  

In Case III, the capacitance was increased by a factor of 10, from 47µF to 4.7µF. Figure 75, 76 & 
77 are the step-response of the open-loop and closed-loop system, bode and nyquist plot for the 
open-loop system with and without the designed lead-lag compensator. The step-response of this 
plant shows that the closed-loop response of the system was much faster and had less overshoot 
than the open-loop system without the compensator. The bode plot shows that the open-loop 
system with the designed compensator had a better phase margin than the open-loop without the 
compensator, making the closed-loop system relatively more stable. The nyquist plot shows that 
the open-loop system with the designed lead-lag compensator had a larger gain margin than the 
open-loop system without the compensator, which means that the system with the designed 
compensator can withstand more gain before becoming unstable as compared to the system 
without the compensator. All in all, the compensator in this case made the system more robust as 
phase margin and gain margin of the open-loop system with the designed compensator were 
relatively better. Therefore, the addition of the compensator made the system relatively more 
stable.  

 

 


